Second Exam MTH 221 , Summer 011

Ayman Badawi

QUESTION 1. $($ Each = 1.5 points, Total = 12 points) Answer the following as true or false: NO WORKING NEED BE SHOWN.
(i) $\operatorname{dim}\left(P_{7}\right)=7$.
(ii) Every 5 points in R^{4} are dependent
(iii) Every 4 points in R^{5} are independent
(iv) Every 6 polynomials in P_{6} form a basis for P_{6}
(v) The point $(2,2,2,10) \in \operatorname{span}\{(1,1,1,1),(-1,-1,-1,7)\}$
(vi) If v_{1}, v_{2} are independent points in R^{3} and $v_{3} \notin \operatorname{span}\left\{v_{1}, v_{2}\right\}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for R^{3}
(vii) If v_{1}, v_{2}, v_{3} are dependent points in R^{5}, then $v_{1},-3 v_{1}+v_{2}, v_{3}$ are also dependent points in R^{5}.
(viii) If $D=\operatorname{span}\{(2,-2,0),(-2,2,1),(4,-4,1)\}$, then $\operatorname{dim}(D)=2$

QUESTION 2. $($ Each $=\mathbf{2}$ points, Total $=\mathbf{2 8}$ points) Circle the correct letter for each of the questions below:
(i) One of the following statements is correct
a. $(2,0,-2),(-2,10,20),(-4,-10,1)$ are independent
b. $(2,1),(0,1), 1,0)$ are independent c. $(0,1,1),(-1,2,0),(-1,3,1)$ are independent d. $\{(2,1),(1,0.5)\}$ is a basis for R^{2}.
(ii) Let $F=\{(3 a+b, 0,6 a+2 b) \mid a, b \in R\}$. We know that F is a subspace of R^{3}. Then $\operatorname{dim}(F)=$
a. 2
b. 3
c. 1
d. cannot be determined
(iii) Consider F in the previous question. Then one of the following points does not belong to F.
a. $(1,0,2)$
b. $(2,0,4)$
c. $(3,0,5)$
d. $(0,0,0)$
(iv) Given v_{1}, v_{2}, v_{3} are independent points in R^{10}. One of the following statements is correct:
a. $v_{1}, v_{2}, 2 v_{1}+v_{3}$ are independent points in R^{3}
b. $v_{1}, v_{1}+v_{3}, v_{3}$ are independent points in R^{3}
c. $v_{1}, v_{1}+v_{2},-3 v_{1}+v_{2}$ are independent points in R^{3}
d. All previous statements are correct.
(v) Let $D=\operatorname{span}\{(1,1,1,1),(-1,-1,-1,0),(0,0,0,2),(-1,-1,-1,4)\}$. One of the following is a basis for D
a. $B=\{(1,1,1,1),(0,0,0,1)\}$
b. $B=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\}$
c. $B=\{(1,1,1,1),(-1,-1,-1,0),(0,0,0,2)\}$
d. None of the previous is correct
(vi) Let $H=\left\{a+(b+2 c) x+(3 b+6 c) x^{2} \mid a, b, c \in R\right\}$ be a subspace of P_{3}. Then $\operatorname{dim}(H)=$
a. 3
b. 1
c. 4
d. 2
(vii) Let H as in the previous question. Then one of the following is a basis for H
a. $B=\left\{1, x, 3 x^{2}\right\}$
b. $B=\left\{1, x+3 x^{2}, 3 x+6 x^{2}\right\}$
c. $B=\left\{1, x, 2 x, 3 x^{2}, 6 x^{2}\right\}$
d. $B=\left\{1, x+3 x^{2}\right\}$.
(viii) Let $A=\left[\begin{array}{ccc}a_{1} & 2 & 4 \\ a_{2} & 4 & 8 \\ a_{3} & -4 & -7\end{array}\right]$ such that $\operatorname{det}(\mathrm{A})=20$. The value of x_{1} in solving the system $A X=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$ is
a. 5
b. 10
c. 0.2
d)Can not be determined
(ix) Consider the previous question, the value of x_{2} in solving the system $A X=\left[\begin{array}{c}4 \\ 8 \\ -7\end{array}\right]$ is
a. 0
b. 1
c. 0.1
d) None of the previous is correct
(x) Let $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ -1 & 1 & 2 & 1 \\ -1 & -1 & -2 & 2 \\ -1 & -1 & -1 & -2\end{array}\right]$ the (3,4)-entry of A^{-1} is
a. -3
b. -2
c. 0.2
d. 2
e. None of the previous is correct
(xi) Given A is a 2×2 matrix such that $\left[\begin{array}{cc}3 & 1 \\ 4 & -1\end{array}\right]+2 A=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$. Then $A=$
a. $\left[\begin{array}{cc}1 & -1 \\ -5 & -4\end{array}\right]$
b. $\left[\begin{array}{cc}9 & 5 \\ -2 & 1\end{array}\right]$
c. $\left[\begin{array}{cc}2 & -1 \\ -9 & 5\end{array}\right]$
d. None of the previous is correct
(xii) Given $\left(A^{T}\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right)^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$. Then $A=$
a. $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$
b. $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
c. $\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$
d. None of the previous is correct
(xiii) One of the following is a subspace of R^{3} :
a. $\left\{\left(a, 2 a-b^{2}, 0\right) \mid a, b \in R\right\}$
b. $\{(a+b,-2 a, b) \mid a, b \in R\}$
c. $\{(3,-a,-b) \mid a, b \in R\}$
d. $\{0, b a+a,-2 b) \mid a, b \in R\}$
(xiv) One of the following is a subspace of P_{3} :
a. $\left\{3-a x+a x^{2} \mid a \in R\right\}$
b. $\left\{3 a x+a x^{2} \mid a \in R\right\}$
c. $\left\{x+a x^{2} \mid a \in R\right\}$
d. $\left\{a+a x+x^{2} \mid a \in R\right\}$

QUESTION 3. (4 points) Find a basis for R^{4}, say B, such that B contains the two independent points $(3,3,-4,0),(-6,-6,9,3)$.

QUESTION 4. (6 points) Let $A=\left[\begin{array}{ccc}4 & -6 & 5 \\ -8 & 13 & -8 \\ -4 & 5 & -6\end{array}\right]$
a) Find the LU-Factorization of A.
b) Use (a) to solve the system $A X=\left[\begin{array}{c}8 \\ -11 \\ -11\end{array}\right]$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

